Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chem Biol Interact ; 346: 109581, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34302801

RESUMEN

Bothrops asper is one of the most important snake species in Central America, mainly because of its medical importance in countries like Ecuador, Panama and Costa Rica, where this species causes a high number of snakebite accidents. Several basic phospholipases A2 (PLA2s) have been previously characterized from B. asper venom, but few studies have been carried out with its acidic isoforms. In addition, since snake venom is a rich source of bioactive substances, it is necessary to investigate the biotechnological potential of its components. In this context, this study aimed to carry out the biochemical characterization of PLA2 isoforms isolated from B. asper venom and to evaluate the antiparasitic potential of these toxins. The venom and key fractions were subjected to different chromatographic steps, obtaining nine PLA2s, four acidic ones (BaspAc-I, BaspAc-II, BaspAc-III and BaspAc-IV) and five basic ones (BaspB-I, BaspB-II, BaspB-III, BaspB-IV and BaspB-V). The isoelectric points of the acidic PLA2s were also determined, which presented values ranging between 4.5 and 5. The findings indicated the isolation of five unpublished isoforms, four Asp49-PLA, corresponding to the group of acidic isoforms, and one Lys49-PLA2-like. Acidic PLA2s catalyzed the degradation of all substrates evaluated; however, for the basic PLA2s, there was a preference for phosphatidylglycerol and phosphatidic acid. The antiparasitic potential of the toxins was evaluated, and the acidic PLA2s demonstrated action against the epimastigote forms of T. cruzi and promastigote forms of L. infantum, while the basic PLA2s BaspB-II and BaspB-IV showed activity against P. falciparum. The results indicated an increase of up to 10 times in antiplasmodial activity, when the Asp49-PLA2 and Lys49-PLA2 were associated with one another, denoting synergistic action between these PLA2 isoforms. These findings correspond to the first report of synergistic antiplasmodial action for svPLA2s, demonstrating that these molecules may be important targets in the search for new antiparasitic agents.


Asunto(s)
Antiprotozoarios/farmacología , Fosfolipasas A2/química , Plasmodium falciparum/efectos de los fármacos , Venenos de Serpiente/metabolismo , Secuencia de Aminoácidos , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Bothrops/metabolismo , Sinergismo Farmacológico , Punto Isoeléctrico , Leishmania infantum/efectos de los fármacos , Panamá , Pruebas de Sensibilidad Parasitaria , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/farmacología , Alineación de Secuencia
2.
Curr Top Med Chem ; 19(22): 2041-2048, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31340737

RESUMEN

BACKGROUND: Functional and structural diversity of proteins of snake venoms is coupled with a wide repertoire of pharmacological effects. Snake venoms are targets of studies linked to searching molecules with biotechnological potential. METHODS: A homologue phospholipase A2 (BmatTX-IV) was obtained using two chromatographic techniques. Mass spectrometry and two-dimensional gel electrophoresis were used to determine the molecular mass and isoelectric point, respectively. By means of Edman degradation chemistry, it was possible to obtain the partial sequence of amino acids that comprise the isolated toxin. Trypanocidal, leishmanicidal and cytoxic activity against Trypanosoma cruzi, Leishmania infantum and murine fibrobasts was determinated. RESULTS: Combination of both chromatographic steps used in this study demonstrated efficacy to obtain the PLA2-Lys49. BmatTX-IV showed molecular mass and isoelectric point of 13.55 kDa and 9.3, respectively. Amino acid sequence of N-terminal region (51 residues) shows the presence of Lys49 residue at position 49, a distinctive trait of enzymatically inactive PLA2. Bothrops mattogrossensis snake venom showed IC50 values of 11.9 µg/mL against Leishmania infantum promastigotes and of 13.8 µg/mL against Trypanosoma cruzi epimastigotes, respectively. On the other hand, the venom showed a high cytotoxic activity (IC50 value of 16.7 µg/mL) against murine fibroblasts, whereas the BmatTX-IV showed IC50 value of 81.2 µg/mL. CONCLUSION: Physicochemical and biological characterization of snake venoms components is critically important, since these complex mixtures provide a source of molecules with antiparasitic potential, making further studies necessary to identify and characterize components with higher efficacy and selectivity.


Asunto(s)
Antiparasitarios/farmacología , Leishmania infantum/efectos de los fármacos , Fosfolipasas A2/farmacología , Venenos de Serpiente/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Bothrops , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Ratones , Paraguay , Pruebas de Sensibilidad Parasitaria , Fosfolipasas A2/química , Fosfolipasas A2/aislamiento & purificación , Venenos de Serpiente/química , Venenos de Serpiente/aislamiento & purificación , Relación Estructura-Actividad
3.
Curr Pharm Biotechnol ; 19(4): 308-335, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29929461

RESUMEN

BACKGROUND: Research involving snake venom has gradually surpassed the simple discovery of new molecules using purification and structural characterization processes, and extended to the identification of their molecular targets and the evaluation of their therapeutic potential. Nevertheless, this only became possible due to constant progress in experimental biology and protein purification approaches. OBJECTIVE: This review aims to discuss the main components of snake venoms that have been investigated for biotechnological purposes, and to discover how these promising biomolecules were obtained with the satisfactory degree of purity that have enabled such studies. Advances in purification technologies of various snake venom molecules have allowed for important discoveries of proteins and peptides with different biomedical and biotechnological applications. RESULT AND CONCLUSION: It is believed that significant experimental and computational advances will arise in similar proportions in the coming years that will allow researchers to map the molecular regions responsible for their pharmacological actions, their respective mechanisms of action and their cell targets.


Asunto(s)
Venenos de Serpiente/química , Venenos de Serpiente/farmacología , Serpientes/fisiología , Animales , Descubrimiento de Drogas , Humanos , Proteínas/química , Venenos de Serpiente/genética , Venenos de Serpiente/uso terapéutico
4.
Toxins (Basel) ; 10(4)2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596324

RESUMEN

Toxic effects triggered by crotalic envenoming are mainly related to crotoxin (CTX), composed of a phospholipase A2 (CB) and a subunit with no toxic activity (CA). Camelids produce immunoglobulins G devoid of light chains, in which the antigen recognition domain is called VHH. Given their unique characteristics, VHHs were selected using Phage Display against CTX from Crotalus durissus terrificus. After three rounds of biopanning, four sequence profiles for CB (KF498602, KF498603, KF498604, and KF498605) and one for CA (KF498606) were revealed. All clones presented the VHH hallmark in FR2 and a long CDR3, with the exception of KF498606. After expressing pET22b-VHHs in E. coli, approximately 2 to 6 mg of protein per liter of culture were obtained. When tested for cross-reactivity, VHHs presented specificity for the Crotalus genus and were capable of recognizing CB through Western blot. KF498602 and KF498604 showed thermostability, and displayed affinity constants for CTX in the micro or nanomolar range. They inhibited in vitro CTX PLA2 activity, and CB cytotoxicity. Furthermore, KF498604 inhibited the CTX-induced myotoxicity in mice by 78.8%. Molecular docking revealed that KF498604 interacts with the CA–CB interface of CTX, seeming to block substrate access. Selected VHHs may be alternatives for the crotalic envenoming treatment.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Crotoxina/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Crotoxina/toxicidad , Escherichia coli/genética , Masculino , Ratones , Simulación del Acoplamiento Molecular , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/uso terapéutico , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/terapia
5.
Int J Biol Macromol ; 107(Pt A): 1014-1022, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28951306

RESUMEN

Phospholipases A2 (PLA2s) are important enzymes present in snake venoms and are related to a wide spectrum of pharmacological effects, however the toxic potential and therapeutic effects of acidic isoforms have not been fully explored and understood. Due to this, the present study describes the isolation and biochemical characterization of two new acidic Asp49-PLA2s from Bothrops brazili snake venom, named Braziliase-I and Braziliase-II. The venom was fractionated in three chromatographic steps: ion exchange, hydrophobic interaction and reversed phase. The isoelectric point (pI) of the isolated PLA2s was determined by two-dimensional electrophoresis, and 5.2 and 5.3 pIs for Braziliase-I and II were observed, respectively. The molecular mass was determined with values ​​of 13,894 and 13,869Da for Braziliase-I and II, respectively. Amino acid sequence by Edman degradation and mass spectrometry completed 87% and 74% of the sequences, respectively for Braziliase-I and II. Molecular modeling of isolated PLA2s using acid PLA2BthA-I-PLA2 from B. jararacussu template showed high quality. Both acidic PLA2s showed no significant myotoxic activity, however they induced significant oedematogenic activity. Braziliase-I and II (100µg/mL) showed 31.5% and 33.2% of cytotoxicity on Trypanosoma cruzi and 26.2% and 19.2% on Leishmania infantum, respectively. Braziliase-I and II (10µg) inhibited 96.98% and 87.98% of platelet aggregation induced by ADP and 66.94% and 49% induced by collagen, respectively. The acidic PLA2s biochemical and structural characterization can lead to a better understanding of its pharmacological effects and functional roles in snakebites pathophysiology, as well as its possible biotechnological applications as research probes and drug leads.


Asunto(s)
Fosfolipasas A2/química , Inhibidores de Agregación Plaquetaria/química , Agregación Plaquetaria/efectos de los fármacos , Venenos de Serpiente/química , Secuencia de Aminoácidos/genética , Animales , Bothrops/genética , Leishmania infantum/efectos de los fármacos , Leishmania infantum/patogenicidad , Modelos Moleculares , Fosfolipasas A2/genética , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/farmacología , Homología de Secuencia de Aminoácido , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad
6.
Int J Biol Macromol ; 103: 525-532, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28527998

RESUMEN

Phospholipases A2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIß and PLIγ. Phospholipases A2 (PLA2s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment.


Asunto(s)
Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Bothrops/genética , Serpientes de Coral/genética , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Clonación Molecular , Conformación Proteica
7.
Int J Biol Macromol ; 102: 571-581, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28390830

RESUMEN

Snake venoms contain various proteins, especially phospholipases A2 (PLA2s), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA2 from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B. marajoensis venom was fractionated through cation exchange followed by reverse phase chromatographies. The isolated toxin, BmajPLA2-II, was structurally characterized with MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by two-dimensional electrophoresis, partial amino acid sequencing, an enzymatic activity assay, circular dichroism, and dynamic light scattering assays. These structural characterization tests presented BmajPLA2-II as a basic Lys49 PLA2 homologue, compatible with other basic snake venom PLA2s (svPLA2), with a tendency to form aggregations. The in vitro anti-parasitic potential of B. marajoensis venom and of BmajPLA2-II was evaluated against Leishmania infantum promastigotes and Trypanosoma cruzi epimastigotes, showing significant activity at a concentration of 100µg/mL. The venom and BmajPLA2-II presented IC50 of 0.14±0.08 and 6.41±0.64µg/mL, respectively, against intraerythrocytic forms of Plasmodium falciparum with CC50 cytotoxicity values against HepG2 cells of 43.64±7.94 and >150µg/mL, respectively. The biotechnological potential of these substances in relation to leishmaniasis, Chagas disease and malaria should be more deeply investigated.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Bothrops , Venenos de Crotálidos/enzimología , Fosfolipasas A2/química , Fosfolipasas A2/farmacología , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Antiprotozoarios/metabolismo , Fosfolipasas A2/metabolismo , Tripsina/metabolismo
8.
Int. J. Biol. Macromol. ; 102: 571-581, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15046

RESUMEN

Snake venoms contain various proteins, especially phospholipases A(2) (PLA(2)s), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA(2) from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B. marajoensis venom was fractionated through cation exchange followed by reverse phase chromatographies. The isolated toxin, BmajPLA(2)-II, was structurally characterized with MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by two-dimensional electrophoresis, partial amino acid sequencing, an enzymatic activity assay, circular dichroism, and dynamic light scattering assays. These structural characterization tests presented BmajPLA(2)-II as a basic Lys49 PLA(2) homologue, compatible with other basic snake venom PLA(2)s (svPLA(2)), with a tendency to form aggregations. The in vitro anti-parasitic potential of B. marajoensis venom and of BmajPLA(2)-II was evaluated against Leishmania infantum promastigotes and Trypanosoma cruzi epimastigotes, showing significant activity at a concentration of 100 mu g/mL. The venom and BmajPLA(2)-II presented IC50 of 0.14 +/- 0.08 and 6.41 +/- 0.64 mu g/mL, respectively, against intraerythrocytic forms of Plasmodium falciparum with CC50 cytotoxicity values against HepG2 cells of 43.64 +/- 1 7.94 and >150 mu g/mL, respectively. The biotechnological potential of these substances in relation to leishmaniasis, Chagas disease and malaria should be more deeply investigated.

9.
Curr Pharm Biotechnol ; 17(14): 1201-1212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27604356

RESUMEN

Cancer, a disease that currently affects approximately 14 million people, is characterized by abnormal cell growth with altered replication capacity, which leads to the development of tumor masses without apoptotic control. Resistance to the drugs used in chemotherapy and their side effects stimulate scientific research seeking new therapies to combat this disease. Molecules from flora and fauna with cytotoxic activity against tumor cells have been studied for their potential to become a source of pharmaceutical agents. In this regard, snake venoms have a variety of proteins and peptides that have proven biotechnological potential. In several studies, antibacterial action and antitumor activity have been observed. One of the most widely studied venom components are phospholipases A2. Snake venom phospholipases A2 (svPLA2s) comprise a large class of molecules that catalyze the hydrolysis of the sn-2 position of phospholipids releasing fatty acids and lysophospholipids and are related to a broad spectrum of biotechnological activities. In addition to their specific cytotoxicity against some tumor cell lines, inhibitory activity of angiogenesis, adhesion and cell migration has been described. The antitumor activity of svPLA2s was observed both in vitro and in vivo, but little is known about the mechanism of action of these proteins in promoting this activity. In this review, the main structural and functional characteristics of svPLA2s are discussed, along with the mechanisms proposed, thus far, to explain their antitumor activity, targeting their potential use as a therapeutic alternative against cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/patología , Péptidos/farmacología , Fosfolipasas A2/metabolismo , Venenos de Serpiente/enzimología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Péptidos/síntesis química
10.
Biomed Res Int ; 2014: 203639, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24683541

RESUMEN

For more than half a century, cytotoxic agents have been investigated as a possible treatment for cancer. Research on animal venoms has revealed their high toxicity on tissues and cell cultures, both normal and tumoral. Snake venoms show the highest cytotoxic potential, since ophidian accidents cause a large amount of tissue damage, suggesting a promising utilization of these venoms or their components as antitumoral agents. Over the last few years, we have studied the effects of snake venoms and their isolated enzymes on tumor cell cultures. Some in vivo assays showed antineoplastic activity against induced tumors in mice. In human beings, both the crude venom and isolated enzymes revealed antitumor activities in preliminary assays, with measurable clinical responses in the advanced treatment phase. These enzymes include metalloproteases (MP), disintegrins, L-amino acid oxidases (LAAOs), C-type lectins, and phospholipases A2 (PLA2s). Their mechanisms of action include direct toxic action (PLA2s), free radical generation (LAAOs), apoptosis induction (PLA2s, MP, and LAAOs), and antiangiogenesis (disintegrins and lectins). Higher cytotoxic and cytostatic activities upon tumor cells than normal cells suggest the possibility for clinical applications. Further studies should be conducted to ensure the efficacy and safety of different snake venom compounds for cancer drug development.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Venenos de Serpiente/uso terapéutico , Animales , Humanos , Terapia Molecular Dirigida
11.
Biomed Res Int ; 2014: 196754, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24738050

RESUMEN

L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far.


Asunto(s)
Factores Biológicos/química , Factores Biológicos/farmacología , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/farmacología , Venenos de Serpiente/química , Venenos de Serpiente/farmacología , Humanos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...